首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7357篇
  免费   837篇
  2021年   92篇
  2020年   61篇
  2019年   62篇
  2018年   98篇
  2017年   92篇
  2016年   142篇
  2015年   232篇
  2014年   241篇
  2013年   316篇
  2012年   408篇
  2011年   369篇
  2010年   245篇
  2009年   245篇
  2008年   320篇
  2007年   289篇
  2006年   271篇
  2005年   266篇
  2004年   252篇
  2003年   244篇
  2002年   260篇
  2001年   198篇
  2000年   233篇
  1999年   180篇
  1998年   101篇
  1997年   98篇
  1996年   77篇
  1995年   82篇
  1994年   59篇
  1993年   75篇
  1992年   162篇
  1991年   151篇
  1990年   164篇
  1989年   144篇
  1988年   116篇
  1987年   138篇
  1986年   120篇
  1985年   113篇
  1984年   114篇
  1983年   76篇
  1982年   60篇
  1981年   74篇
  1979年   81篇
  1978年   56篇
  1977年   68篇
  1975年   61篇
  1974年   60篇
  1973年   70篇
  1972年   55篇
  1971年   58篇
  1969年   57篇
排序方式: 共有8194条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
External cranial vault molding using dynamic splinting is an adjunct to surgery in the treatment of craniosynostosis skull deformities. The skull molding cap not only maintains desired skull form, but also provides further active molding to normalize skull shape. Dynamic skull remodeling from these devices occurs primarily by translational movements of bone. Traction and compression result in bony repositioning which allows further reshaping as the osteoblasts and osteoclasts respond to these stresses. Three basic designs have been described. In practice, each one must be modified to meet individual needs, and adaptations are made according to established principles of dynamic splinting.  相似文献   
35.
Light-regulated methylation of chloroplast proteins   总被引:2,自引:0,他引:2  
Protein carboxyl methyltransferases, which catalyze transfer of methyl groups from S-adenosyl-L-methionine to the free carboxyl groups of acidic amino acids in proteins, can be divided into two classes based on several characteristics, such as the stoichiometry of substrate protein methylation, base stability of the incorporated methyl group, specificity for substrate, and participation in a regulatory system with which methylesterases are associated. The presence of such an enzyme in a photosynthetic system was demonstrated in the present work. The extent of methylation of chloroplast proteins was stimulated 30% by light and then decreased by the same amount in the presence of the electron transport inhibitor 3-(3',4'-dichlorophenyl)-1', 1'-dimethylurea or uncouplers of phosphorylation, indicating a dependence of the methyltransferase activity on photosynthetic electron transport and the trans-membrane delta pH. The light-independent, as well as the light-dependent, activity is probably of chloroplast origin since the extent of light stimulation in the purified thylakoid membranes and the stromal fraction was similar, and at low concentrations of S-adenosyl-L-methionine the small subunit of ribulose-1,5-bisphosphate carboxylase:oxygenase was found to be the predominant substrate. The labeling pattern of chloroplast proteins and labeling of an exogenous nonchloroplast protein indicated that the methyltransferase activity was not substrate-specific, although at low concentrations of the methyl donor, the small subunit of ribulose-1,5-bisphosphate carboxylase:oxygenase was labeled almost exclusively. Based on the low stoichiometry (less than 100 pmol/mg protein) of the methylation, its base lability, irreversibility, and the lack of substrate specificity except at very low concentrations of methyl donor, it was inferred that the chloroplast methyltransferase is best classified as a class II system that may function as part of a repair mechanism to replace racemized amino acids.  相似文献   
36.
Calmodulin has been shown to interact with high affinity with muscle phosphofructokinase (Mayr, G. W. (1984) Eur. J. Biochem. 143, 513-520, 521-529). In this study, direct binding measurements indicated that each of the two subunits of dimeric phosphofructokinase bound two calmodulins with Kd values of about 3 nM and 1 microM, respectively, in a strictly Ca2+-dependent way. To get more detailed information about this interaction, calmodulin-binding fragments were isolated from a CNBr digest of phosphofructokinase using affinity chromatography on calmodulin-agarose. Two fragments, M11 (Mr 3080) and M22 (Mr 8060), formed a 1:1 stoichiometric complex with Ca2+-calmodulin. The amino acid sequences of these fragments were determined, and their positions in the three-dimensional structure-model of phosphofructokinase are proposed. Fragment M11, which binds to calmodulin with the higher affinity (Kd 11.4 nM), is located in a region of the subunit where two dimers have been proposed to make contacts if associating to active tetrameric enzyme. A stabilization of the dimeric form of the enzyme by binding of calmodulin supports this location of M11. The weaker binding fragment M22 (Kd 198 nM) corresponds to the C-terminal part of the polypeptide and contains the site which is phosphorylated by cAMP-dependent protein kinase. Both fragments have structural properties in common with the isolated calmodulin-binding domains of myosin light chain kinase: two cationic segments rich in hydrophobic residues, one constantly possessing a tryptophan, and the other exhibiting an amino acid sequence resembling sites phosphorylated by cAMP-dependent protein kinase.  相似文献   
37.
Sequence of the halobacterial glycosaminoglycan   总被引:3,自引:0,他引:3  
The cell-surface glycoprotein of halobacterium contains a sulfated repeating unit saccharide chain, similar to the mammalian glycosaminoglycans. The composition of a presumptive repeating pentasaccharide unit of this glycosaminoglycan is 1 GlcNAc, 1 GalNAc, 1 Gal, 1 GalA (where GalA represents galacturonic acid), 1 3-O-methyl-GalA, and 2 SO42-. Linkage to protein of this glycoconjugate involves the hitherto unique unit Asn-GalNAc, with the N-linked asparagine residue being the second NH2-terminal amino acid and part of the common N-linked glycosyl acceptor sequence Asn-X-Thr(Ser). Transfer of the completed, sulfated glycosaminoglycan from its lipid precursor to the protein occurs at the cell surface, and the presence of this sulfated saccharide chain in the cell-surface glycoprotein seems to be required to maintain the structural integrity of the rod-shaped halobacteria. In this paper, we report the complete saccharide structure of this N-linked glycosaminoglycan. This structure is deduced from chemical analyses of fragments that were isolated after hydrazinolysis and subsequent nitrous acid deamination or after mild acidic hydrolysis of purified Pronase-derived glycosaminoglycan-peptides. The halobacterial glycosaminoglycan consists, on the average, of 10 repeating pentasaccharide units of the following structure. (formula: see text) The reducing end N-acetylgalactosamine residue is linked directly to the asparagine, without a special saccharide linker region.  相似文献   
38.
39.
Summary In the epithelium of rabbit gallbladder, in the nominal absence of bicarbonate, intracellular Cl activity is about 25mm, about 4 times higher than intracellular Cl activity at the electrochemical equilibrium. It is essentially not affected by 10–4 m acetazolamide and 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) even during prolonged exposures; it falls to the equilibrium value by removal of Na+ from the lumen without significant changes of the apical membrane potential difference. Both intracellular Cl and Na+ activities are decreased by luminal treatment with 25mm SCN; the initial rates of change are not significantly different. In addition, the initial rates of change of intracellular Cl activity are not significantly different upon Na+ or Cl entry block by the appropriate reduction of the concentration of either ion in the luminal solution. Luminal K+ removal or 10–5 m bumetanide do not affect intracellular Cl and Na+ activities or Cl influx through the apical membrane. It is concluded that in the absence of bicarbonate NaCl entry is entirely due to a Na+–Cl symport on a single carrier which, at least under the conditions tested, does not cotransport K+.  相似文献   
40.
Summary Cl influx at the luminal border of the epithelium of rabbit gallbladder was measured by 45-sec exposures to36Cl and3H-sucrose (as extracellular marker). Its paracellular component was evaluated by the use of 25mm SCN which immediately and completely inhibits Cl entry into the cell. Cellular influx was equal to 16.7eq cm–2 hr–1 and decreased to 8.5eq cm–2 hr–1 upon removal of HCO 3 from the bathing media and by bubbling 100% O2 for 45 min. When HCO 3 was present, cellular influx was again about halved by the action of 10–4 m acetazolamide, 10–5 to 10–4 m furosemide, 10–5 to 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS), 10–3 m amiloride. The effects of furosemide and SITS were tested at different concentrations of the inhibitor and with different exposure times: they were maximal at the concentrations reported above and nonadditive. In turn, the effects of amiloride and SITS were not additive. Acetazolamide reached its maximal action after an exposure of about 2 min. When exogenous HCO 3 was absent, the residual cellular influx was insensitive to acetazolamide, furosemide and SITS. When exogenous HCO 3 was present in the salines, Na+ removal from the mucosal side caused a slow decline of cellular Cl influx; conversely, it immediately abolished cellular Cl influx in the absence of HCO 3 . In conclusion, about 50% of cellular influx is sensitive to HCO 3 , inhibitable by SCN, acetazolamide, furosemide, SITS and amiloride and furthermore slowly dependent on Na+. The residual cellular influx is insensitive to bicarbonate, inhibitable by SCN, resistant to acetazolamide, furosemide, SITS and amiloride, and immediately dependent on Na+. Thus, about 50% of apical membrane NaCl influx appears to result from a Na+/H+ and Cl/HCO 3 exchange, whereas the residual influx seems to be due to Na+–Cl contranport on a single carrier. Whether both components are simultaneously present or the latter represents a cellular homeostatic counterreaction to the inhibition of the former is not clear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号